
Chapter 1

Basics

1.1 gaussian quadrature

(http://de.wikipedia.org/wiki/Gau%C3%9F-Quadratur)
Gaussian quadrature
g(x) is the function which needs to be integrated
g(x) is splitted to g(x) = w(x) · Φ(x) w(x) are the weights for Φ(x). Φ(x) is
then approximatedby a polynom p(x) with specific initial values xi. The resulting
formula can be integrated very easily:∫ b

a

g(x)dx =
∫ b

a

w(x) · Φ(x)dx ≈
∫ b

a

wi · p(x)dx =
n∑

i=0

Φ(xi)wi

where w(x) ≥ 0
Φ(x) is a continous function
the integrated guassian quadrature matches exactly for all polinomials with a degree <=
2n− 1

1.2 maxwell-boltzmann distribution
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Chapter 2

Dimensionality

We have the following dimensional parameters of the real world:
Domain size S′ is the flow domain size along the x axis. The size of one fluid

cell in each dimension is then ∆x = S′/res where res specifies the grid resolution.
Thus we get the following dimensional parameters:

viscosity ν’
[

m2

s

]
domain size S′ [m]
grid resolution res′ []
gravitational force g’

[
m
s2

]
To limit the compressiblity the dimensional timestep is determined by

∆t′ =

√
gc ·∆x′

|g′|

A value of gc = 0.005 keeps the compressibility below half percent.

The other parameters have to be adopted to a cell size of 1 size unit length and also
to a time step of 1 time unit length.
Therefore we scale the viscosity and gravitational parameter:

ν = ν′ · ∆t′

∆x′2

g = g′ · ∆t′2

∆x′

As a result we can use a unit length for the cell size (∆x = 1) as well the timestep
(∆t = 1) for the whole simulation.
The relaxation time τ and the can be computated from the viscosity:

τ = 3ν +
1
2

ω =
1
τ
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Chapter 3

Notes

mass tracking:
keeps track of an additional variable m for the mass of the fluid in the cell
change of mass is given by fluid stream. adds of subtracts the change of fluid ex-
change
distingishes:

1. empty cell: m <= 0

2. interface cell: 0 <m< ρ

3. fluid cell: ρ <= m

standard exchange:

1. at least one cell is not a interface cell at x and x+ ~ei:

∆mi(x, t+ 1) = fĩ(x+ ~ei, t)− fi(x, t)

2. both cells x and x+ ~ei are interface cells:

∆mi(x, t+ 1) = (fĩ(x+ ~ei, t)− fi(x, t))
(ε(~x+ ~ei, t) + ε(~x, t))

2

the fluid fraction within the cell for interface cells can be calculated by

ε = m

ρ

mass differences are summed up to represent the new mass:

m(x, t+ 1) = m(x, t+ 1) +
18∑

i=1

∆mi(x, t+ 1)

there is no mass exchange with empty cells!
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fluid density distribution which comes from empty cell has to be manually re-
constructed since there cant be an exchange with empty cells (ρg is the density of
the gas, often set to 1)

fĩ(x, t+ 1) = feq
i (ρg, ~u) + feq

ĩ
(ρg, ~u)− fi(x, t)

new fluid density coming from empty cell
= eq. dens. distrib. outgoing with fluid velocity in interface cell
+ eq. dens. distrib. of neighbored empty cell incoming with fluid velocity of interface cell
- outgoing fluid of fluid cell to empty cell

QUESTION: why does it makes sense to use the density of the air be-
cause it’s thousand times less than that of air?!?

if a cell has less than 0 or more than ρ mass the remaining mass has to be
redistributed to the neighbored interface cells!


